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ABSTRACT 

In this paper we discuss some analytical aspects of categories. Here we see that if  F : C→ D is a covariant 

functor then image of F will not form a subcategory of D. We provide an example to show it. Also we try to 

find some results of the category of rings ( Ring), the category of sets (Set), the category of groups (Gp) and 

category of topological spaces ( Top).  We define some functors between categories and discuss their 

properties. 
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INTRODUCTION   

Here we discuss some analytical aspects of 

categories. We try to find some properties of the 

category of rings (Ring), category of sets (Set) , 

category of topological spaces (Top) and category 

of groups (Gp).  Also we find some functors 

between categories and their properties. If  F : 

C→ D  is a covariant functor then,  in general , its  

image will not form a subcategory of  D.  

 

PRELIMINARIES 

For notions of category theory we shall in general 

follow the notation and terminology of Popescu 
[6]

. However, we do deviate somewhat.  

For  C a category and A, B objects of C,  Mor(A, 

B) denotes the set  of morphisms from A to B.  

We will also  follow Popescu [6] for the definition 

of Preadditive, Additive  and Preabelian and 

abelian category. 

For kernel and cokernel we follow MacLane
[2]

. 

We follow the definition of retraction and 

coretraction from Popescu and  Pareigis
[11]

. 

We shall use the definition of Balanced category 

from Mitchel 
[3]

 Monomorphism from Schubert 
[5]

 

and epimorphism and isomorphism from Pareigis 
[11]

.  

 

MAIN RESULTS  

Let us consider, 

Rng  =  the  category of rings , whose objects are 

rings and morphisms are ring homomorphismms. 

Rngu: the category of rings with unity together 

with unital (identity preserving) ring homomor-

phisms. 

DivRing: the category of division rings together 

with unital ring homomorphisms. 

 

PROPERTIES 

1. DivRng is full subcategory of  Ringu 

2. Rngu is not full subcategory of Rng as 

every ring homomorphism between rings 

with identity is not unital. 

3. Both DivRng and Rngu are subcategory of  

Rng. 

Proposition 1.1: In DivRng , every epimorphism 

is bijective  morphism. 

Proof: Let f be an epimorphism in DivRng.  At 

first we will prove that in DivRng    every 

morphism is monomorphism. 
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Since the ideals of a division ring are {0} and R. 

So every (unital) ring homomorphism in DivRng 

is injective.(by considering the kernel of a unital 

ring homomorphism of division rings)And so a 

monomorphism  

Therefore f is both epimorphism and 

monomorphism. 

Hence f is bijective morphism. 

 

Proposition 1.2: In Rng not all monomorphisms 

are kernels. 

Proof: Let R ∈ obRng  be an object in Rng. Let H 

be a subring, but not an  ideal of R. 

Then’ i’ is not kernel. But ‘i’is monomorphism . 

Proposition 1.3:  DivRng has no initial object, no 

final object, no zero object and no zero morphism. 

Proof:  Let R, R’ be two division rings with 

different characteristics. Then Mor(R , R’) = φ. So 

DivRng  has no initial object, no final object, no 

zero object and no zero morphism. 

Proposition 1.4: Rngu and DivRng are not 

abelian category. 

Proof :  since Rngu and DivRng donot have zero 

morphisms so they canot be additive categories. 

And hence both are not abelian categories. 

Proposition 1.5:  Rng is also not abelian. 

Proof:  Rng has zero morphisms . But then also it 

is not abelian as sum of two rings is not a ring. 

Proposition 1.6: Every covariant functor 

preserves retraction and section. 

Proof :  Let F  : C   →  D  be a covariant functor. 

Let f: A →   B  be a retraction, then there is a 

morphism g  :B →  A such that        fog = 1B.  

Now F(fog) = f(1B) 

 = > F(f) o F(g)  = 1F(B) [ since F is  covariant] 

 = >F(f) is retraction. 

Let f: A →   B  be a section, then there is a 

morphism g : B →  A such that  gof = 1A.  

Now F(gof) = f(1A) 

 = > F(g)o F(f)  = 1F(A) [ since F is  covariant] 

 = >F(f) is  section. 

] 

Proposition 1.7:  Every covariant functor  F : Set  

→ C  preserves monomorphism  and  

epimorphism. 

Proof:  Let f: A →   B  is monomorphism. We 

will show that f is injective. 

Suppose to the contrary , f is not injective . So we 

have  a≠a’ such that f(a) = f(a’). 

We will show that functions g,h can be 

constructed such that  fog =  foh 

Implies g ≠ h (i.e f is not monomrphism). 

Let us consider the functions g,h : C → A such 

that fog = foh , where C = {a , a’}. 

Let us define g(a) = a,  g(a’) = a’ and  

              h(a) = h(a’) = a. 

thus we have f og = foh  but  g ≠ h 

Hence f is not monomorphism 

Therefore monomorphism implies injective in Set. 

Next we will prove that injective in Set is section. 

Let f : A →B be injective in Set. Let us define g : 

B →A such that for a fixed a∈ A  

g(b) = a’ if f(a’)  = b 

          = a if b ∈ B – f(A) . 

Then  gof (a’)  =  g (f (a’)) = g(b) = a’ 1A (a’) 

  = > gof = 1A . 

Hence f is section. 

B y proposition 1.6  we have  F(f) is section in C. 

But  every section is monomorphism. 

Thus F(f ) is monomorphism in C. 

Similarly it can be proved that in Set ‘’ f is  

Epimorphism  iff f is  retraction.” 

By proposition 1.6 F(f) is  retraction. 

But every retraction in a category is an 

epimorphism. 

Thus F(f) is an epimorphism in C.   

Problem: Provide an example of functor which 

does not preserve monomorphisms. 

Soluton: Let us consider the forgetful functor  F : 

DivRng   → Rng. 

Here in DivRng, every morphism is 

monomorphism  but the image under F in Ring  

may not be monomorphism. 

Let us consider ------ 

Set = the category of sets together with mapping 

between them 

Fin Set = the category of finite sets and together 

with maps between them. 

Inj = the category of sets together with the 

injective maps between them. 
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Surj = The category of sets together with the  

surjective maps between them. 

Bij = The category of sets together with the 

bijective maps between them. 

 

PROPERTIES: 

1. Fin Set is full subcategory of  Set. 

2. Inj, Surj and Bij are sub categories of  Set. 

3. Set is not an abelian category as it does not 

have zero object. 

4. Similarly Fin Set, Inj , Surj,  Bij  are also 

not abelian categories. 

Proposition 1.8:  Prove that if F: C → D is a 

functor between categories with  zero object, then 

the following conditions are equivalent: 

a) F preserves constant morphisms; a 

morphism f : A → B is constant provided 

that for any pair A′  r⇉s  A of morphisms 

we have f o r = f o s. 

b) F preserves coconstant morphisms; 

c) F preserves zero morphisms; 

d) F preserves zero objects. 

  

Proof:   (d) = > (c) 

Let F preserves zero objects i.e. if Z is a zero 

object in C then F(Z) is zero object in D. Let  g : 

A  → B be a zero morphism in C. 

Then either A or B or both A and B are zero 

objects. Thus by our assumption either F(A) or 

F(B) or both are zero objects in D. 

Hence F(g) is zero morphism in D. 

(c) = > (b), (a) 

Let F preserves zero morphisms. 

By definition of zero morphism , a zero morphism 

is both constant and coconstant morphism. 

Hence F preserves both constant and coconstant 

morphisms. 

(a) = > (d) 

Let F preserves constant morphisms. 

Let Z be a zero object in C. Let g : Z → B be a 

zero morphism. 

Thus g is both constant and co constant  

morphisms, by definition. 

Hence F(g); F(Z) → F(B) is both  constant and 

coconstant  morphisms in D. 

Thus F(Z) is zero object in D. 

(b) = > (d) 

Let F preserves coconstant morphisms. 

Let Z be a zero object in C. Let g : Z → B be a 

zero morphism. 

Thus g is both constant and coconstant  

morphisms, by definition. 

Hence F(g); F(Z) → F(B) is both  constant and 

coconstant  morphisms in D. 

Thus F(Z) is zero object in D. 

 

In the following every category is taken to be a 

full subcategory of, Ab, the category of abelian 

groups. 

a) The category of torsion abelian groups 

(Tor) is an abelian category. 

b) The category of torsion-free abelian 

groups (Torfree) is not an abelian 

category. 

c) The category of fnitely generated abelian 

(FG-Ab) groups is an abelian category. 

d) The category of divisible groups(Div) is 

not an abelian category. 

 

Proposition 1.9:  T: Ab   → Tor  is a covariant 

functor, where T sends every to its torsion 

subgroup and every group homomorphism to its 

restrictuion to the torsion subgroup. 

 

Proof:  Here T (A) = A’, A’ being torsion 

subgroup of A. 

For f  ∈ Mor (A, B), g ∈ Mor (C, A), T (f) ∈  Mor 

(A’ , B’)  and  T (g) ∈  Mor (C’ , A’)  T(f) , T(g) 

are  the restriction to the torsion subgroup such 

that T(f)(a’)= a’ and T(g)(c’) = c’ 

Then   I )  T(fog) (c’)= c’ and    {T(f)o T(g)}(c’)= 

c’ 

Thus T(fog) = T(f) o T(g).  

Similarly it can be shown that  

  ii) T(1A)  = 1T(A).  

Hence T is a covariant functor. 

 

Proposition 1.10:  T: Ab → Torfree  is a 

covariant functor, where T sends every group  to 

its quotient by its torsion subgroup and every 

group homomorphism to the induced 

homomorphism. 
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Proof :  It is obvious from the above proposition 

1.9 

 

Let us consider the following: 

Top = the category of topological spaces 

equipped with continuous map between 

topological spaces. 

Haus: the category of topological spaces with 

hausdorff property.  

FinHaus: the category of finite topological spaces 

with hausdorff property.  

ConnTop:  the category of connected topological 

spaces. 

DiscnTop: the category of disconnected 

topological spaces. 

CompTop:  the category of compact topological 

spaces. 

DsTop: the category of discrete topologies. 

IndsTop: The category of indiscrete topologies. 

T0 –Top: the category of T0 topological spaces. 

T1 – Top: The category of T1 spaces. 

 

Proposition:  The monomorphisms in Top are the 

injective continuous maps. 

 

Proposition:  The epimorphisms are the surjective 

continuous maps. 

 

Proposition: The isomorphisms are the 

homeomorphisms. 

 

PROPERTIES: 

1. ConnTop,  DiscnTop,  CompTop ,DsTop,  

IndsTop, T0 –Top , T1 – Top are 

subcategories  of  Top. 

2. DsTop, IndsTop is a subcategory of Haus. 

3. IndsTop is a  subcategory of  CompTop. 

4. IndsTop is a full subcategory of  ConnTop. 

5. DsTop is a full subcategory of  DiscnTop. 

6. Haus is a full subcategory of  Top. 

7. T1 – Top is a subcategory of T0 –Top. 

8. DsTop is  a  subcategory of  T0 –Top. But  

IndsTop is  not a  subcategory of  T0 –Top. 

9. Haus is a subcategory of  T1 – Top. But the 

converse is not true. 

10. FinHaus  is a subcategory of  DsTop. 

Note: Φ is the initial object, and singletons (sets 

with exactly one elements) are final objects in 

Top. Top has no zero object nor zero morphisms. 

The same is true in Haus. 

 

Proposition 1.11:  Top is neither  abelian  nor 

normal  nor  conormal. 

 

Proof: Since the very definitions of kernels and 

cokernels in a category already need the existence 

of (at least) zero morphisms, there are no kernels 

nor cokernels in Top. Thus, Top is neither abelian  

nor normal nor  conormal. 

 

Note: The same is true in Haus. 

 

Note : The  map  U : Top → Set  to the category 

of sets which assigns to each topological space the 

underlying set and to each continuous map the 

underlying function  is forgetful functor. 

 

Proposition 1.12:  Let us consider the map  T : 

Set→ Top  which equips a given set with the 

discrete topology. And let us suppose the map  I : 

Set → Top  which equips a given set with the 

indiscrete topology. The both are functors and 

both of these functors are, in fact, right inverses to 

U i.e. U o T and U o I are equals to the identity 

functor on  the category  Set. 

 

Proof: Let us consider the map  T: Set→ Top   

such that for A, B ∈ ob Set and  

f ∈ Mor(A, B) 

T (A) = {A, D} where D is the collection of all the 

subsets of A. 

And   T(f) = fD, fD being  continuous map between 

the discrere topology on  A and on B,as a function 

between discrete topologies is continuous 

function. 

Then  

   i ) T(fog)   =  (fog)D 

  =  fD o gD 

  =  T(f) o T(g). 

ii) T(1A)       = 1T(A). 

thus T is a covariant functor. 
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Similarly , it can be proved that  I : Set → Top  is 

also covariant functor. 

 

Now (U o T) (A) = U (T(A)) = U ({A, D}) = A  

(by definition) = IdSet (A) 

(UoT) (f) = U (T(f)) = U(fD) =  f   (by definition) 

= IdSet(f) 

Hence U oT =  IdSet . 

 

Similarly it can be proved that U o I  = IdSet. 

 

Proposition 1.13:  The map  T : Set→ Top  which 

equips a given set with the discrete topology. and 

the map  I : Set → Top which equips a given set 

with the  indiscrete topology  are full embeddings. 

 

Proof : Let A , B ∈ obSet be any two objects and 

let f∈Mor(I(A) ,I( B)) be any morphism in Top. 

Then f is a continuous map as any function 

between indiscrete topologies is continuous map. 

Thus we have f in Set such that        

I(f) = f.  Therefore I is full. 

Next let f,g∈ Mor (A, B) such that  

I(f) = I(g)= >  f = g 

Hence I is embedding. 

Similarly it can be proved that T is full embedding 

as any function between discrete topologies is 

continuous.  

 

Theorem 1: (This theorem is highlighted by 

Gitalee  Das , Gauhati University) If  ),( A   be 

an  abelian  group such that it is a  direct sum  

Q )( jk

jpC   of  a  number of copies of the 

additive group of rational numbers  and   a  

number  of  copies  of  additive  finite  cyclic 

groups  where  jk

jp │m , m is an integer  ,  then   

there  exists  a  Goldie ring R  such that    
R  = A 

. 

Proposition 1.14: Let Ab(add) be a category of 

abelian groups satisfying the condition of 

theorem1 and let GRng be the category of  goldie 

rings. Then we have a covariant functor F : 

Ab(add)  →    GRng  which sends every abelian 

group G  in  Ab (add) to R
+
  of R in GRng  and 

abelian group homomorphism to abelian  group 

homomorphism. 

 

Proof: Thee proof is obvious from the above 

theorem 1. 

 

Theorem 2: (This theorem is highlighted by 

Gitalee Das , Gauhati University)  If ),( A  be 

an abelian group such that it is a  direct sum 

CT   where T is a bounded group and C is a 

torsion free group admitting a Goldie ring 

structure with 1, then there exists a  Goldie ring  

R   such that   R  = A . 

 

Proposition1.15:  Let  Ab (bn , torfree) be the 

category of abelian groups which satisfy the 

condition of theorem2 and  GRng  be the category 

of  Goldie rings. Then we can have a covariant 

functor  G : Ab(bn , torfree)  →  GRng  which 

sends every abelian group G  in  Ab (bn , torfree)  

to   R
+
  of  R in GRng (by above theorem) and 

abelian group homomorphism to abelian  group 

homomorphism. 

 

Proof: It is obvious from the above theorem 2. 

 

Theorem 3: (This theorem is highlighted by 

Gitalee  Das , Gauhati University)  If R satisfies 

a.c.c.  on  annihilators  of subsets of M as a right  

R-module , then R
+
 is finitely generated. 

 

Proposition 1.16 : Let  RngAcc  be the category 

of  all such ring R satisfying ascending chain 

condition (a.c.c.)  on annihilators of subsets of M 

as a right R- module   and  FG-Ab be the category 

of finitely generated abelian  groups, then we have 

a forgetful functor T : RngAcc   → FG-Ab which 

sends each R in RngAcc  to R
+
 in FG-Ab (forgets 

the multiplication) and each ring homomorphism  

in RngAcc  to group homomorphism in  FG-Ab. 

 

Proof: It is to prove, by using the above theorem 

3. 
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